Enrollment No:	Exam Seat No:
Em diment No.	Exam Seat No.

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Mathematics - II

Subject Code: 4SC02MAT1 Branch: B.Sc. (All)

Semester: 2 Date: 31/10/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

a) Find principal value of
$$\log(1-i\sqrt{3})$$
. (02)

b) Solve:
$$(D^3 - 1)y = 0$$
 (02)

c) Find solution of
$$e^{4z} = i$$
 (02)

d) Find real and imaginary part of
$$\sin z$$
. (02)

e)
$$e^{2\pi i} =$$
_____. (01)
(a) 0 (b) 1 (c) -1 (d) i

h) The polar form of
$$z = \frac{1+i}{\sqrt{2}}$$
 is _____. (01)

(a)
$$e^{\frac{3\pi}{4}i}$$
 (b) 1 (c) $e^{\frac{\pi}{4}i}$ (d) $e^{\frac{-\pi}{4}i}$

i) The equation
$$2(x^2 + y^2 + z^2) - 2xy + 2yz + 2zx = 3a^2$$
 represents a (01)

(a) cone (b) sphere (c) right circular cylinder (d) pair of planes
j) The order of the differential equation
$$\left(\frac{d^2y}{dx^2}\right)^{2/3} = \left[y + 5\left(\frac{dy}{dx}\right)\right]^{\frac{1}{3}}$$
 is

(a) 1 (b)
$$\frac{1}{2}$$
 (c) $\frac{2}{3}$ (d) 2

Attempt any four questions from Q-2 to Q-8

- **b**) Find the value of $(1+i)^{40} + (1-i)^{40}$. (04)
- c) Simplify: $\frac{\left(\cos 5\theta + i\sin 5\theta\right)^{-\frac{1}{5}} \left(\cos 4\theta i\sin 4\theta\right)^{\frac{3}{2}}}{\left(\cos 3\theta i\sin 3\theta\right)^{3} \left(\cos 2\theta + i\sin 2\theta\right)^{-7}}$ (03)

Q-3 Attempt all questions (14)

a) Prove that
$$\tan 6\theta = \frac{6\tan\theta - 20\tan^3\theta + 6\tan^5\theta}{1 - 15\tan^2\theta + 15\tan^4\theta - \tan^6\theta}$$
 (05)

b) Find the roots of the equation
$$z^6 - 1 = 0$$
. (05)

c) Solve:
$$(D^2 - 3D + 2) y = \sin x \cdot \sin 2x$$
 (04)

Q-4 Attempt all questions (14)

a) Using De-moivre's theorem solve
$$z^7 + z^4 + z^3 + 1 = 0$$
. (07)

b) Solve:
$$x^2y'' - xy' + 2y = x \log x$$
 (07)

Q-5 Attempt all questions (14)

a) Prove that
$$cosh^{-1}(z) = log(z + \sqrt{z^2 - 1})$$
. (05)

- **b)** Find the principal value of $(-i)^i$. (05)
- c) Find the real and imaginary part of $\tanh z$. (04)

Q-6 Attempt all questions (14)

a) If
$$z^2 \sin^2 \theta - z \sin \theta + 1 = 0$$
 then prove that $\alpha^n + \beta^n = 2 \cos \left(\frac{n\pi}{3}\right) \cos ec^n \theta$ (07)

b) Solve:
$$(3x+2)^2 y'' + 3(3x+2) y' - 36y = 3x^2 + 4x + 1.$$
 (07)

Q-7 Attempt all questions (14)

- a) Identify, describe and sketch the surface $16x^2 + 36y^2 + 9z^2 = 144$. (05)
- **b)** Find the enveloping cone of the sphere $x^2 + y^2 + z^2 2x + 4z = 1$ with its vertex at (1, 1, 1).
- c) Solve: $(D^2 1)y = \cos x \cdot \sinh x$ (04)

Q-8 Attempt all questions (14)

- a) The vertex of cone is (a, b, c) and the yz plane cuts it in the curve F(y, z) = 0, show that xz plane cuts it in the curve y = 0, $F\left[\frac{bx}{x-b}, \frac{cx-az}{x-a}\right] = 0$. (05)
- **b)** Find equation of cylinder whose generators are parallel to $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$ and guiding curve $x^2 + y^2 + z^2 = 9$.
- c) Solve: $(D^2 6D + 5)y = e^{3x}$ (04)

